
FIGARO: An efficient and objective tool for optimizing microbiome rRNA gene
trimming parameters

Michael M. Weinstein1,2, Aishani Prem1, Mingda Jin1, Shuiquan Tang1 and Jeffrey M.
Bhasin1
1 Department of Bioinformatics, Zymo Research Corp., Irvine, CA, USA
2 Molecular, Cell, and Developmental Biology/Quantitative and Computational
Biosciences Institute, University of California, Los Angeles, CA, USA

ABSTRACT
Summary: Microbiome studies continue to provide tremendous insight into the
importance of microorganism populations to the macroscopic world. High-throughput
DNA sequencing technology (i.e., Next-generation Sequencing) has enabled the cost-
effective, rapid assessment of microbial populations when combined with bioinformatic
tools capable of identifying microbial taxa and calculating the diversity and composition
of biological and environmental samples. Ribosomal RNA gene sequencing, where 16S
and 18S rRNA gene sequences are used to identify prokaryotic and eukaryotic species,
respectively, is one of the most widely-used techniques currently employed in microbiome
analysis. Prior to bioinformatic analysis of these sequences, trimming parameters must
be set so that post-trimming sequence information is maximized while expected errors in
the sequences themselves are minimized. In this application note, we present FIGARO:
a Python–based application designed to maximize read retention after trimming and
filtering for quality. FIGARO was designed specifically to increase reproducibility and
minimize trial-and-error in trimming parameter selection for a DADA2–based pipeline and
will likely be useful for optimizing trimming parameters and minimizing sequence errors
in other pipelines as well where paired-end overlap is required.

Availability and implementation: The FIGARO application is freely available as source
code at https://github.com/Zymo-Research/figaro.

1. INTRODUCTION
The study of microbial communities has proven critical to further understanding of a wide
variety of topics ranging from agriculture to tumor immunology1,2. Targeted sequencing,
particularly of the ribosomal RNA (rRNA) gene sequence, remains a popular and efficient
option for identifying different microbes present and assessing the microbial composition
of a sample3. Illumina provides the industry leading platform for high-throughput
sequence analysis with an error model that is well-studied4. Due to the expected
presence of errors generated from Illumina sequencing, different methods have been

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/610394doi: bioRxiv preprint first posted online Apr. 16, 2019;

https://github.com/Zymo-Research/figaro
http://dx.doi.org/10.1101/610394
http://creativecommons.org/licenses/by-nc-nd/4.0/

developed to
compensate for these
errors in an effort to
minimize spurious
identification of novel
microbial community
members arising from
sequencing artifacts.
Initially, clustering based
upon a fixed threshold
(generally 3%) of
dissimilarity (often called
the OTU approach) was
the standard5. These
methods improved
specificity in microbiome
analyses at the cost of
resolution. Recently,
there has been a
demand for higher
resolution targeted
sequencing approaches
for species- and strain-
level identification of
microbes. Fulfilling this
demand requires
statistical methods to correct sequencing errors, with DADA26 and Deblur7 being common
solutions. When utilizing either of these methods for paired-end reads, it is necessary to
merge the read pairs prior to analysis; this is only possible if sufficient length remains on
both reads after trimming to cover the entire amplicon with sufficient overlap length.
FIGARO is a Dockerized Python-based application that can select optimal trimming sites
for paired-end data that allows for minimizing expected sequencing errors while
maximizing read retention and maintaining sufficient read length for downstream merging.

2. DESCRIPTION AND USAGE OF FIGARO
User inputs: The user must provide the total length of their amplicon as well as a folder
containing untrimmed paired-end read data in FASTQ format. Optional inputs include
specifying the name of the output file, specifying input and output directories, subsampling
rate for the FASTQ files, minimum overlap between the paired-end reads, and the
expected error percentile to use in filtering at each tested position.

Panel A: Fitting an exponential regression to the 83rd percentile for cumulative expected error
values across multiple samples from a single sequencing experiment on a MiSeq. The high
(>0.99) r2 value in both directions is representative of what was often observed with this model.
Panel B: A plot showing the percent read retention, trimming site scores, and forward and
reverse expected error allowances for a set of 16S rRNA gene sequences covering the V3 and
V4 regions generated on a MiSeq. The vertical dashed line represents the trimming site
recommended by FIGARO, providing minimal expected error allowances in both directions
while still preserving the expected percentage of reads.
Panel B: A plot showing the percent read retention, trimming site scores, and forward and
reverse expected error allowances for a set of 16S rRNA gene sequences covering the V3 and
V4 regions generated on a MiSeq. The vertical dashed line represents the trimming site
recommended by FIGARO, providing minimal expected error allowances in both directions
while still preserving the expected percentage of reads.

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/610394doi: bioRxiv preprint first posted online Apr. 16, 2019;

http://dx.doi.org/10.1101/610394
http://creativecommons.org/licenses/by-nc-nd/4.0/

Modeling expected errors by read position: Like DADA26, Figaro utilizes the
cumulative expected errors for quality filtering8. Because the rate of expected error
accumulation across reads can vary between devices, runs on the same device, and read
directions on the same run, an exponential regression model is built for each set of reads
analyzed using the generic equation 𝑦𝑦 = 𝑎𝑎 ∙ 𝑒𝑒𝑏𝑏𝑏𝑏 + 𝑐𝑐. This model describes the n-th
percentile for expected errors at a given position in the read (with a default value of n=84,
corresponding to 1 standard deviation above the mean) and is found using the curve_fit
function in Scipy’s optimize package9. This regression model was initially selected based
upon observed data strongly suggesting an exponential model and reinforced by
subsequent applications of this model often yielding R2-values greater than 0.99 for both
read directions (Figure panel A).

Selecting candidate trimming parameters: Given an expected amplicon size and
minimum overlap between the forward and reverse reads, calculating the required
combined read-length for both reads can be done by summing the amplicon size and
overlap length. The candidate trimming sites are found by determining all combinations
of forward and reverse trimming positions that will yield the required combined read-
length. Maximum expected error values are calculated for forward and reverse reads
based upon the candidate trimming position and the previously determined exponential
regression model.

Calculating read retention post-filtering: To predict the effect of filtering on read
retention, the Numpy library is used to construct an array of cumulative expected error
values for all potential trimming positions within every read in the supplied data set10.
Subsampling can be used to improve speed and decrease the memory footprint of
FIGARO while still achieving accurate results, with the default subsampling behavior
being determined by the size of the input data. The forward and reverse expected error
arrays are then iterated over at the candidate trimming sites to quantify how many reads
would be expected to remain following quality filtering.

Scoring candidate trimming sites: Candidate trimming sites are scored based upon
their rate of read retention with a penalty subtracted for expected errors greater than one
as follows, where RR is the percent read retention and EE represents the expected error:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑅𝑅𝑅𝑅 − [(𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1)2 + (𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−1)2]

Outputs: The primary output of FIGARO is a list of potential trimming site parameters
sorted from highest-scoring to lowest. These results can be output to both the console
for manual review, or to a JSON-formatted text file for parsing if using an automated
pipeline. Additionally, FIGARO will generate figures describing the expected error

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/610394doi: bioRxiv preprint first posted online Apr. 16, 2019;

http://dx.doi.org/10.1101/610394
http://creativecommons.org/licenses/by-nc-nd/4.0/

regression models for both forward and reverse reads.

3. RESULT
Utilizing FIGARO, combinations of trimming sites were found that could be used while
keeping expected error allowances in each paired read to a minimum and still allowing
the expected percentage of reads to pass filtering (Figure panel B). Utilizing FIGARO on
reads generated using the ZymoBIOMICS™ Microbial Community Standard—a mock
microbial community with known organisms present in a known proportion—allowed us
to automatically select trimming parameters in under a minute on a laptop computer.
These parameters, utilized in a typical DADA2 pipeline, were capable of detecting all
expected organisms in appropriate proportions. Analyzing untrimmed reads in the same
pipeline only detected a single organism and determining appropriate trimming
parameters with an experienced technician required several minutes of observation and
multiple iterations of trial-and-error.

4. CONCLUSION

Sequence trimming is a critical step in a high-resolution microbiome analysis pipeline that
is sometimes left to trial and error or the best guess of the pipeline operator. While this
is likely adequate for shorter amplicons (such as those covering a single variable region
of the 16S rRNA), longer amplicons—often covering multiple variable regions of the 16S
rRNA gene—are often approaching the technical capabilities of the sequencing platform
and require more intensive optimization. FIGARO models the error rate for each
sequencing run in each direction to find optimal trimming sites that will maximize read
retention after filtering while removing some lowest-quality percentile of reads.

REFERENCES
1. The Human Microbiome Project Consortium, Curtis Huttenhower, Dirk Gevers, Rob

Knight, Sahar Abubucker, Jonathan H. Badger, Asif T. Chinwalla, et al. “Structure,
Function and Diversity of the Healthy Human Microbiome.” Nature 486, no. 7402
(June 2012): 207–14. https://doi.org/10.1038/nature11234.

2. Fierer, Noah. “Embracing the Unknown: Disentangling the Complexities of the Soil
Microbiome.” Nature Reviews Microbiology 15, no. 10 (October 2017): 579–90.
https://doi.org/10.1038/nrmicro.2017.87.

3. Gopalakrishnan, V., C. N. Spencer, L. Nezi, A. Reuben, M. C. Andrews, T. V.
Karpinets, P. A. Prieto, et al. “Gut Microbiome Modulates Response to Anti–PD-1
Immunotherapy in Melanoma Patients.” Science (New York, N.Y.) 359, no. 6371
(January 5, 2018): 97–103. https://doi.org/10.1126/science.aan4236.

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/610394doi: bioRxiv preprint first posted online Apr. 16, 2019;

https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nrmicro.2017.87
https://doi.org/10.1126/science.aan4236
http://dx.doi.org/10.1101/610394
http://creativecommons.org/licenses/by-nc-nd/4.0/

4. Schirmer, Melanie, Umer Z. Ijaz, Rosalinda D’Amore, Neil Hall, William T. Sloan,
and Christopher Quince. “Insight into Biases and Sequencing Errors for Amplicon
Sequencing with the Illumina MiSeq Platform.” Nucleic Acids Research 43, no. 6
(March 31, 2015): e37–e37. https://doi.org/10.1093/nar/gku1341.

5. Kopylova, Evguenia, Jose A. Navas-Molina, Céline Mercier, Zhenjiang Zech Xu,
Frédéric Mahé, Yan He, Hong-Wei Zhou, Torbjørn Rognes, J. Gregory Caporaso,
and Rob Knight. “Open-Source Sequence Clustering Methods Improve the State Of
the Art.” MSystems 1, no. 1 (February 23, 2016): e00003-15.
https://doi.org/10.1128/mSystems.00003-15.

6. Callahan, Benjamin J., Paul J. McMurdie, Michael J. Rosen, Andrew W. Han, Amy
Jo A. Johnson, and Susan P. Holmes. “DADA2: High-Resolution Sample Inference
from Illumina Amplicon Data.” Nature Methods 13, no. 7 (July 2016): 581–83.
https://doi.org/10.1038/nmeth.3869.

7. Amir, Amnon, Daniel McDonald, Jose A. Navas-Molina, Evguenia Kopylova, James
T. Morton, Zhenjiang Zech Xu, Eric P. Kightley, et al. “Deblur Rapidly Resolves
Single-Nucleotide Community Sequence Patterns.” MSystems 2, no. 2 (April 21,
2017): e00191-16. https://doi.org/10.1128/mSystems.00191-16.

8. Edgar, Robert C., and Henrik Flyvbjerg. “Error Filtering, Pair Assembly and Error
Correction for next-Generation Sequencing Reads.” Bioinformatics 31, no. 21
(November 1, 2015): 3476–82. https://doi.org/10.1093/bioinformatics/btv401.

9. Oliphant, Travis E. “Python for Scientific Computing.” Computing in Science &
Engineering 9, no. 3 (2007): 10–20. https://doi.org/10.1109/MCSE.2007.58.

10. Walt, Stéfan van der, S Chris Colbert, and Gaël Varoquaux. “The NumPy Array:
A Structure for Efficient Numerical Computation.” Computing in Science &
Engineering 13, no. 2 (March 2011): 22–30. https://doi.org/10.1109/MCSE.2011.37.

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/610394doi: bioRxiv preprint first posted online Apr. 16, 2019;

https://doi.org/10.1093/nar/gku1341
https://doi.org/10.1128/mSystems.00003-15
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1128/mSystems.00191-16
https://doi.org/10.1093/bioinformatics/btv401
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1101/610394
http://creativecommons.org/licenses/by-nc-nd/4.0/

