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ABSTRACT 
Summary:  Microbiome studies continue to provide tremendous insight into the 
importance of microorganism populations to the macroscopic world.  High-throughput 
DNA sequencing technology (i.e., Next-generation Sequencing) has enabled the cost-
effective, rapid assessment of microbial populations when combined with bioinformatic 
tools capable of identifying microbial taxa and calculating the diversity and composition 
of biological and environmental samples.  Ribosomal RNA gene sequencing, where 16S 
and 18S rRNA gene sequences are used to identify prokaryotic and eukaryotic species, 
respectively, is one of the most widely-used techniques currently employed in microbiome 
analysis.  Prior to bioinformatic analysis of these sequences, trimming parameters must 
be set so that post-trimming sequence information is maximized while expected errors in 
the sequences themselves are minimized.  In this application note, we present FIGARO: 
a Python–based application designed to maximize read retention after trimming and 
filtering for quality.  FIGARO was designed specifically to increase reproducibility and 
minimize trial-and-error in trimming parameter selection for a DADA2–based pipeline and 
will likely be useful for optimizing trimming parameters and minimizing sequence errors 
in other pipelines as well where paired-end overlap is required. 

 

Availability and implementation:  The FIGARO application is freely available as source 
code at https://github.com/Zymo-Research/figaro.  

 

1. INTRODUCTION 
The study of microbial communities has proven critical to further understanding of a wide 
variety of topics ranging from agriculture to tumor immunology1,2.  Targeted sequencing, 
particularly of the ribosomal RNA (rRNA) gene sequence, remains a popular and efficient 
option for identifying different microbes present and assessing the microbial composition 
of a sample3.  Illumina provides the industry leading platform for high-throughput 
sequence analysis with an error model that is well-studied4.  Due to the expected 
presence of errors generated from Illumina sequencing, different methods have been 
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developed to 
compensate for these 
errors in an effort to 
minimize spurious 
identification of novel 
microbial community 
members arising from 
sequencing artifacts.  
Initially, clustering based 
upon a fixed threshold 
(generally 3%) of 
dissimilarity (often called 
the OTU approach) was 
the standard5.  These 
methods improved 
specificity in microbiome 
analyses at the cost of 
resolution.  Recently, 
there has been a 
demand for higher 
resolution targeted 
sequencing approaches 
for species- and strain-
level identification of 
microbes.  Fulfilling this 
demand requires 
statistical methods to correct sequencing errors, with DADA26 and Deblur7 being common 
solutions.  When utilizing either of these methods for paired-end reads, it is necessary to 
merge the read pairs prior to analysis; this is only possible if sufficient length remains on 
both reads after trimming to cover the entire amplicon with sufficient overlap length.  
FIGARO is a Dockerized Python-based application that can select optimal trimming sites 
for paired-end data that allows for minimizing expected sequencing errors while 
maximizing read retention and maintaining sufficient read length for downstream merging. 

 

2. DESCRIPTION AND USAGE OF FIGARO 
User inputs: The user must provide the total length of their amplicon as well as a folder 
containing untrimmed paired-end read data in FASTQ format.  Optional inputs include 
specifying the name of the output file, specifying input and output directories, subsampling 
rate for the FASTQ files, minimum overlap between the paired-end reads, and the 
expected error percentile to use in filtering at each tested position. 

 

 

 
 
Panel A: Fitting an exponential regression to the 83rd percentile for cumulative expected error 
values across multiple samples from a single sequencing experiment on a MiSeq. The high 
(>0.99) r2 value in both directions is representative of what was often observed with this model. 
Panel B: A plot showing the percent read retention, trimming site scores, and forward and 
reverse expected error allowances for a set of 16S rRNA gene sequences covering the V3 and 
V4 regions generated on a MiSeq.  The vertical dashed line represents the trimming site 
recommended by FIGARO, providing minimal expected error allowances in both directions 
while still preserving the expected percentage of reads. 
Panel B: A plot showing the percent read retention, trimming site scores, and forward and 
reverse expected error allowances for a set of 16S rRNA gene sequences covering the V3 and 
V4 regions generated on a MiSeq.  The vertical dashed line represents the trimming site 
recommended by FIGARO, providing minimal expected error allowances in both directions 
while still preserving the expected percentage of reads. 
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Modeling expected errors by read position: Like DADA26, Figaro utilizes the 
cumulative expected errors for quality filtering8.  Because the rate of expected error 
accumulation across reads can vary between devices, runs on the same device, and read 
directions on the same run, an exponential regression model is built for each set of reads 
analyzed using the generic equation 𝑦𝑦 = 𝑎𝑎 ∙ 𝑒𝑒𝑏𝑏𝑏𝑏 + 𝑐𝑐.  This model describes the n-th 
percentile for expected errors at a given position in the read (with a default value of n=84, 
corresponding to 1 standard deviation above the mean) and is found using the curve_fit 
function in Scipy’s optimize package9.  This regression model was initially selected based 
upon observed data strongly suggesting an exponential model and reinforced by 
subsequent applications of this model often yielding R2-values greater than 0.99 for both 
read directions (Figure panel A). 

 

Selecting candidate trimming parameters: Given an expected amplicon size and 
minimum overlap between the forward and reverse reads, calculating the required 
combined read-length for both reads can be done by summing the amplicon size and 
overlap length.  The candidate trimming sites are found by determining all combinations 
of forward and reverse trimming positions that will yield the required combined read-
length.  Maximum expected error values are calculated for forward and reverse reads 
based upon the candidate trimming position and the previously determined exponential 
regression model. 

 

Calculating read retention post-filtering:  To predict the effect of filtering on read 
retention, the Numpy library is used to construct an array of cumulative expected error 
values for all potential trimming positions within every read in the supplied data set10.  
Subsampling can be used to improve speed and decrease the memory footprint of 
FIGARO while still achieving accurate results, with the default subsampling behavior 
being determined by the size of the input data.  The forward and reverse expected error 
arrays are then iterated over at the candidate trimming sites to quantify how many reads 
would be expected to remain following quality filtering. 

 

Scoring candidate trimming sites: Candidate trimming sites are scored based upon 
their rate of read retention with a penalty subtracted for expected errors greater than one 
as follows, where RR is the percent read retention and EE represents the expected error: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑅𝑅𝑅𝑅 − [(𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1)2 +  (𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−1)2] 

 

Outputs:  The primary output of FIGARO is a list of potential trimming site parameters 
sorted from highest-scoring to lowest.  These results can be output to both the console 
for manual review, or to a JSON-formatted text file for parsing if using an automated 
pipeline.  Additionally, FIGARO will generate figures describing the expected error 
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regression models for both forward and reverse reads. 

 

3. RESULT 
Utilizing FIGARO, combinations of trimming sites were found that could be used while 
keeping expected error allowances in each paired read to a minimum and still allowing 
the expected percentage of reads to pass filtering (Figure panel B).  Utilizing FIGARO on 
reads generated using the ZymoBIOMICS™ Microbial Community Standard—a mock 
microbial community with known organisms present in a known proportion—allowed us 
to automatically select trimming parameters in under a minute on a laptop computer. 
These parameters, utilized in a typical DADA2 pipeline, were capable of detecting all 
expected organisms in appropriate proportions.  Analyzing untrimmed reads in the same 
pipeline only detected a single organism and determining appropriate trimming 
parameters with an experienced technician required several minutes of observation and 
multiple iterations of trial-and-error. 

 

4. CONCLUSION 

Sequence trimming is a critical step in a high-resolution microbiome analysis pipeline that 
is sometimes left to trial and error or the best guess of the pipeline operator.  While this 
is likely adequate for shorter amplicons (such as those covering a single variable region 
of the 16S rRNA), longer amplicons—often covering multiple variable regions of the 16S 
rRNA gene—are often approaching the technical capabilities of the sequencing platform 
and require more intensive optimization.  FIGARO models the error rate for each 
sequencing run in each direction to find optimal trimming sites that will maximize read 
retention after filtering while removing some lowest-quality percentile of reads. 
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